

WATERSTONE ENVIRONMENTAL, INC.

2936 E. CORONADO STREET * ANAHEIM * CA 92806 714-414-1122 * FAX: 714-414-1166

January 25, 2016

Los Angeles Unified School District Office of Environmental Health and Safety 333 South Beaudry Street, 21st Floor Los Angeles, California 90017-5156

Re: Air Testing Results for Beckford Avenue Elementary School in Porter Ranch, California

Waterstone Environmental, Inc. (Waterstone) is pleased to submit this letter report detailing the results of recent air testing and sample collection at the Beckford Avenue Elementary School located at 19130 Tulsa Street, Porter Ranch, California.

Waterstone has collected air samples and conducted real time air monitoring using various handheld monitors. This report summarizes the results of air sample analysis for samples collected on January 19, 2015.

Sample Collection and Analysis

Sample collection consisted of both grab samples (approximately 2 minute sample filling period) in tedlar bags as well as 8-hour samples collected in summa canisters in the indoor health office. The summa canisters were placed in the breathing zone and allowed to sit undisturbed for a period of 8 hours.

One tedlar bag sample and one summa canister sample were delivered to Quantum Analytical Services Inc., a laboratory certified by the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (CARB). Both samples were submitted for analysis of sulfur compounds by SCAQMD Method 307-91, and hydrocarbon speciation by modified EPA 18. The complete laboratory report with analysis results is attached.

One tedlar bag sample and one summa canister sample were delivered to Air Technology Laboratories, Inc., a laboratory accredited by the National Environmental Laboratory Accreditation Program (NELAP). Samples were submitted for analysis of BTEX by EPA Method TO-15. The complete laboratory report with analysis results is attached.

Real time air monitoring was conducted in indoor and outdoor spaces using a Jerome J631X for hydrogen sulfide detection; dräger tubes for benzene, toluene, ethylbenzene, and xylenes; a multi RAE monitor to measure percent lower explosive limit (%LEL) as an indicator of the potential presence of methane; and an ultra RAE monitor used to measure volatile organic compounds (VOCs) as an indicator of the potential presence of benzene as well as for taking benzene specific reading using a benzene sensor tube.

Analytical Results

The sample IDs created to refer to Beckford Avenue Elementary School are designated with a "BF" in the sample ID. The analytical results for Beckford Avenue Elementary School presented in the attached laboratory reports are summarized as follows:

- > No sulfur compounds were detected at concentrations above laboratory detection limits.
- Methane was detected at a maximum concentration of 5,050 parts per billion by volume (ppbv) and below the environmental screening limits for methane of 500,000 ppbv used by the Department of Toxic Substances Control (DTSC) and 1,000,000 ppbv used by the National Institute for Occupational Safety (NIOSH). Additionally, methane was not detected at a concentration that requires a fire contingency plan (8,800,000 ppbv) as required by the Los Angeles County Building Code.
- The maximum concentration of benzene detected was 0.49 ppbv and below the environmental screening limits for benzene of 8 ppbv used by OEHHA for a 1-hour acute exposure.
- The maximum concentration of toluene detected was 1.8 ppbv and below the environmental screening limits for toluene of 9,640 ppbv used by OEHHA for a 1-hour acute exposure.
- ➤ The maximum concentration of ethylbenzene detected was 0.55 ppbv and below the environmental screening limits for ethylbenzene of 450 ppbv used by OEHHA for a chronic (lifetime) exposure.
- The maximum concentration of xylene (sum of p-xylene, m-xylene and o-xylene) detected was 3.7 ppbv and below the environmental screening limits for xylene of 4,970 ppbv used by OEHHA for a 1-hour acute exposure.

Analyte	Maximum On-site Detection (ppby)	Environmental Regulatory Limit (ppby)	Environmental Regulatory Limit Description
Sulfide Compounds	None	30 (Hydrogen Sulfide) 7 (Hydrogen	California Ambient Air – 1 hour and OEHHA Acute REL (42 ug/m ³)* OEHHA Chronic REL (10 ug/m ³)*
Methane	5,050	Sulfide) 500,000	DTSC Site-Specific Screening Level (for ambient indoor and outdoor air). http://www.hawaiidoh.org/references/CalEPA%202005b.pdf
		1,000,000	NIOSH maximum recommended safe methane concentration for workers during an 8-hour period. http://www.cdc.gov/niosh/ipcsneng/neng0291.html

Analyte	Maximum On-site Detection (ppbv)	Environmental Regulatory Limit (ppbv)	Environmental Regulatory Limit Description
Ethane, Ethylene	None	1,000,000	NIOSH maximum recommended safe ethane concentration for workers during an 8-hour period. http://www.cdc.gov/niosh/ipcsneng/neng0266.html
		2,000,000	NIOSH maximum recommended safe ethylene concentration for workers during an 8-hour period. <u>http://www.cdc.gov/niosh/ipcsneng/neng0475.html</u>
Other Hydrocarbon Speciations by EPA 18	None	1,950 (Hexane)	OEHHA Chronic REL (7,000 ug/m ³)*
Benzene	0.49	8 1	OEHHA Acute REL (27 ug/m ³)* 8-hour and chronic OEHHA RELs (3 ug/m ³)*
Toluene	1.8	9,640 80	OEHHA Acute REL (37,000 ug/m ³)* OEHHA Chronic REL (300 ug/m ³)*
Ethylbenzene	0.55	450	OEHHA Chronic REL (2,000 ug/m ³)*
Xylenes	3.7	4,970 160	OEHHA Acute REL (22,000 ug/m ³)* OEHHA Chronic REL (700 ug/m ³)*

* OEHHA RELs listed in micrograms per cubic meter (ug/m³) have been converted to ppbv using the molecular weight of each specific chemical. <u>http://oehha.ca.gov/air/allrels.html</u>

Real Time Monitoring Results

The real time monitoring logs are attached. In-field air monitoring results are summarized as follows:

- Methane (as indicated by %LEL), VOCs, benzene, toluene, ethylbenzene, and xylenes were not detected during field monitoring.
- Hydrogen sulfide was detected at a maximum concentration of 0.003 ppmv, well below the OEHHA acute REL of 0.03 ppmv.

The majority of the regulatory limits we are comparing against are Reference Exposure Levels (RELs) developed and published by California's Office of Environmental Health Hazards (OEHHA). OEHHA is one of six agencies under the umbrella of the California Environmental Protection Agency (Cal/EPA). OEHHA's overall mission is to protect and enhance public health and the environment by scientific evaluation of risks posed by hazardous substances.

OEHHA evaluates health effects of chemicals found in indoor air, including developing Reference Exposure Levels for use with indoor air exposure scenarios. OEHHA participates in a number of inter-Agency activities designed to evaluate indoor air quality health issues and to move California toward safer indoor air quality. OEHHA provides health-related assistance to health officers.

LAUSD - OEHS January 25, 2016 Page 4 of 4

Methane was compared to the DTSC Site-Specific Screening Level for ambient indoor and outdoor air as well as the NIOSH maximum recommended safe methane concentration for workers during an 8-hour period.

As shown in the table above, the maximum on-site detections are well below the published environmental regulatory limits.

Sincerely,

Jose Michinek

Grace Rinck, CIH Principal Industrial Hygienist Aurora Industrial Hygiene

CLIENT: Los Angeles Unified School District

DATE: 01/19/2016

INSTRUMENT: Vantage Pro 2 Weather Station

BY: Rob Pitzer

LOCATION: Beckford Avenue Elementary School

TIME	Wind Speed (mph)	Wind Direction	Temperature (*F)	Humidity (%)	Daily Rain (in)	Rain Rate (per day)	Barometric Pressure (in Hg)	Task
0811	0	Е	56	80	0	0.00	29.19	First Read After Set up
0838	2	SE	56	82	0	0.00	29.19	
1135	1	S	58	77	0	0.00	29.18	
1259	5	SE	60	74	0	0.00	29.14	
1337	0	S	59	78	0	0.00	29.14	Starting to Drizzle
1437	0	SW	57	91	0.05	0.008	29.15	

COMMENTS: <u>mph = miles per hour</u>; *F = degrees Fahrenheit; in = inches; in Hg = inches of Mercury; % = percent_

SSW = south to southwest

LO	CLIENT CATION	T: Los An N: Beckfo	igeles U rd Aven	nified Scho ue Elemen	ool Distric	t ol	DATE: BY:	01/19/16 Rob Pitze	PA	GE _	1	of _	4
I	NSTRUM	IENT: <u>U</u>	ltra RA	E 3000 Ph	oto Ioniza	ntion Dete	ector						
BEN	ZENE F	UNCTION	N TEST	Pass	s (No Cali	bration Re	equired)	🗌 Fai	l (Condu	ıct Cali	bration)		
BEI	NZENE S	SENSOR	CALIBI	RATION V	ALUE:	pp	mv CA	LIBRAT	'ION RE	EADIN	G:	p	pmv
I	NSTRUM	IENT: <u>M</u>	<u>lulti RA</u>	E			_						
FUN	ICTION 7	TEST:	P P	ass (No Ca	libration F	Required)	Γ	Fail	Conduc	t Calibı	ration)		
	CAL	IBRATIO	N VAL	UE: H2S	<u>Б рр</u>	<u>mv</u> CO	ppmv	LEL_	%	O2	%	IB	ppmv
	CALIBI	RATION	READII	NG: H2S	S <u>pp</u>	<u>mv</u> CO	ppmv	LEL_	%	02	%	IB	ppmv
INSTRUMENT: Jerome J631X Hydrogen Sulfide Analyzer													
FUN	FUNCTION TEST: Pass (No Calibration Required) Fail (Return to Manufacturer for Calibration)												
CA	ALIBRAT	TION VA	LUE: N	V/A Factory	/ Calibrate	ed CA	LIBRATION	READIN	IG: Ma	nufactu	rer Cali	bratio	n Only
TIME VOCs Benzene % Hydrogen Drager Tubes													
TIME	(ppmv)	(ppmv)	LEL	(ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Xylene (ppmv)			Location		
0705	0.00		0	0.000						Mai	in Office A	Area	
0713	0.00		0	0.000						Qua	d Area by	Flag	
0738	0.00		0	0.000						Kinderg	garten Pla	yground	l
0741	0.00		0	0.000]	Lower Lat	b	
0816	0.00		0	0.001						1	Upper Lat)	
0819	0.00		0	0.002						I	Auditoriur	n	
0852					ND	ND	ND	ND		Mai	in Office A	Area	
0915	0.00		0	0.002						I	Auditoriur	n	
0918	0.00		0	0.003						Lu	unch Pavil	ion	
1923	0.00		0	0.002						SW Cor	rner of Pla	yground	1
0926	0.00		0	0.001						SE Corr	ner of Play	yground	l
Weather	Conditions:	Partly Cl	oudy	Wind	Speed: 0 r	nph	Wind Direc	tion: Eas	t		Tempe	rature:	56 ° F

Comments: The UltraRAE is used for measuring Volatile Organic Compound (VOC) and Benzene. The MultiRae is used for measuring VOCs and %LEL (used as an indicator of the potential presence of methane). The Jerome J631X is used for measuring Hydrogen Sulfide. Drager tubes are used for measuring Benzene, Toluene, Xylene and Ethylbenzene. %LEL is used as an indicator of methane but is not chemical specific. VOC readings are an indicator of all volatile constituents and are not chemical specific. Real time readings are used to guide sample collection. Samples collected daily are submitted to a laboratory for analyses.

H2S = Hydrogen Sulfide; O2 = Oxygen; % = percent; CO = Carbon Monoxide; LEL = Lower Explosive Limit; IB = Isobutylene ND = Not Detected; ppmv = parts per million by volume; N/A = Not Applicable; -- = No Reading (no measurement taken at this time)

	CLIENT	T: Los An J: Beckfo	igeles U	nified Scho	ol District	t	DATE:	01/19/16 Rob Pitze	PA	GE	2	of _	4
	ISTRUM	IENT· II	ltra RA	E 3000 Ph	oto Ioniza	tion Dete		ROU I HZC					
BEN	ZENE F	UNCTION	N TEST:	: 🖂 Pass	(No Calil	bration Re	equired)	🗌 Fai	l (Condu	ict Cal	ibration)		
BEN	VZENE S	SENSOR (CALIB	RATION V	ALUE:	ррі	mv CA	LIBRAT	TION RE	ADIN	G:	р	pmv
IN FUN	ISTRUM CTION 1	IENT: <u>M</u> FEST:	Iulti RA	<u>.E</u> ass (No Cal	libration R	(equired)		Fail ((Conduct	t Calib	oration)		
	CAL	IBRATIO	N VAL	UE: H2S	S pp	mv CO	ppmv	LEL	%	02	%	IB	ppmv
	CALIBI	RATION	READI	NG: H2S	s pp	mv CO	ppmv	LEL	%	02	%	IB	ppmv
IN	ISTRUM	IENT: Je	erome J	631X Hvdi	rogen Sul	fide Anal	vzer						
FUNCTION TEST: Pass (No Calibration Required) Fail (Return to Manufacturer for Calibration)													
CA	LIBRAT	ΓΙΟΝ VΑΙ	LUE: N	J/A Factory	Calibrate	d CA	LIBRATION	READIN	IG∙ Mar	nufacti	ırer Cali	bratio	n Only
					Canorate	u ch	LIDICITION			iuraett		oration	il Olify
TIME	VOCs	Benzene	%	Hydrogen Sulfide		Drag	ger Tubes						
TIVIL	(ppmv)	(ppmv)	LEL	(ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Xylene (ppmv)			Location		
0930	0.00		0	0.001						Insie	de Bungalo	ow 25	
0934	0.00		0	0.003	ND	ND	ND	ND		Kinder	garten Pla	yground	1
0951	0.00		0	0.003							Lower La	b	
0953	0.00		0	0.002						Qua	ad Area by	Flag	
1109	0.00		0	0.002	ND	ND	ND	ND		L	unch Pavil	ion	
1130	0.00		0	0.001						SW Co	orner of Pla	ygroun	d
1134	0.00		0	0.001						SE Co	rner of Play	yground	1
1136	0.00		0	0.000						Insie	de Bungalo	ow 19	
1140	0.00		0	0.001						Kinder	garten Pla	yground	1
1142	0.00		0	0.001							Lower La	b	
1205	0.00	0.00	0	0.001							Auditoriur	n	
Weather 0	Conditions:	Cloudy		Wind S	Speed: <u>1 r</u>	nph	Wind Direc	tion: Sou	ıth		Tempe	rature:	58 ° F

Comments: The UltraRAE is used for measuring Volatile Organic Compound (VOC) and Benzene. The MultiRae is used for measuring VOCs and %LEL (used as an indicator of the potential presence of methane). The Jerome J631X is used for measuring Hydrogen Sulfide. Drager tubes are used for measuring Benzene, Toluene, Xylene and Ethylbenzene. %LEL is used as an indicator of methane but is not chemical specific. VOC readings are an indicator of all volatile constituents and are not chemical specific. Real time readings are used to guide sample collection. Samples collected daily are submitted to a laboratory for analyses.

H2S = Hydrogen Sulfide; O2 = Oxygen; % = percent; CO = Carbon Monoxide; LEL = Lower Explosive Limit; IB = Isobutylene ND = Not Detected; ppmv = parts per million by volume; N/A = Not Applicable; -- = No Reading (no measurement taken at this time)

ES = Elementary School

LO	CLIENT	T: Los An N: Beckfo	geles U rd Aven	nified Scho ue Element	ol District	t ol	DATE: 0)1/19/16 Rob Pitze	PAGE	3	of	4
IN BEN	NSTRUM	IENT: <u>U</u> UNCTION	ltra RA N TEST:	E 3000 Pho	oto Ioniza ; (No Calil	tion Dete	ector equired)	🗌 Fai	l (Conduct	Calibration)	
BEI	NZENE S	SENSOR (CALIB	RATION V	ALUE:	ppi	<u>mv</u> CA	LIBRAT	TON READ	DING:		ppmv
IN FUN	NSTRUM	IENT: <u>M</u> FEST:	<mark>ulti RA</mark> ⊠ Pa	<u>E</u> ass (No Cal	libration R	equired)	C] Fail ((Conduct Ca	alibration)		
	CAL	IBRATIO	N VAL	UE: H2S	Spp	<u>mv</u> CO	ppmv	LEL	<u>%</u> O	2%	IB	ppmv
	CALIBI	RATION	READIN	NG: H2S	S <u>pp</u>	<u>mv</u> CO	ppmv	LEL	<u>%</u> O	2%	IB	ppmv
IN FUN CA	CALIBRATION READING: H2S											
TIME	TIME VOCs Benzene % Hydrogen Drager Tubes											
	(ppinv)	(ppmv)	LLL	(ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Xylene (ppmv)		Location	1	
1212	0.00	0.00	0	0.001						Upper La	ıb	
1216	0.00	0.00	0	0.001						Lower La	ıb	
1218	0.00	0.00	0	0.001						Inside Roor	n 17	
1221	0.00	0.00	0	0.001					SE	Corner of Pla	aygroui	nd
1225	0.00		0	0.001					SW	Corner of Pl	aygrou	nd
1229	0.00		0	0.001	ND	ND	ND	ND		Auditoriu	m	
1312	0.00		0	0.001						Inside Room	n #11	
1314	0.00		0	0.002					Outside	Between Upp	per and	Lower
1317	0.00		0	0.000					I	nside Bungalo	ow #29	
1324	0.00		0	0.001					I	nside Bungalo	ow #23	
1328	0.00		0	0.002					SE	Corner of Pla	aygrou	nd
Weather (Conditions:	Cloudy		Wind S	Speed: 5-7	7 mph	Wind Direct	tion: S-S	E	Temp	erature	: 60 ° F

Comments: The UltraRAE is used for measuring Volatile Organic Compound (VOC) and Benzene. The MultiRae is used for measuring VOCs and %LEL (used as an indicator of the potential presence of methane). The Jerome J631X is used for measuring Hydrogen Sulfide. Drager tubes are used for measuring Benzene, Toluene, Xylene and Ethylbenzene. %LEL is used as an indicator of methane but is not chemical specific. VOC readings are an indicator of all volatile constituents and are not chemical specific. Real time readings are used to guide sample collection. Samples collected daily are submitted to a laboratory for analyses. H2S = Hydrogen Sulfide; O2 = Oxygen; % = percent; CO = Carbon Monoxide; LEL = Lower Explosive Limit; IB = Isobutylene ND = Not Detected; ppmv = parts per million by volume; N/A = Not Applicable; -- = No Reading (no measurement taken at this time)

LO	CLIENT CATION	F: Los An N: Beckfo	geles U rd Aven	nified Scho ue Element	ol District	t ol	DATE: 0	01/19/16 Rob Pitze	PA	AGE <u>4</u>		of _	4
IN BEN	ISTRUM ZENE EI	IENT: <u>U</u>	Itra RA	E 3000 Pho	oto Ioniza : (No Calil	ition Dete	ector	🗌 Fai	l (Cond	uct Calib	ration		
BEI	VZENE S	SENSOR (CALIBE	ATION V			mv CA	LIBRAT	ION RI	EADING		'n	nmv
IN FUN	ISTRUM	IENT: <u>M</u> FEST:	<u>[ulti RA</u> ⊠ Pa	<u>E</u> ass (No Cal	libration R	Required)		_ Fail (Conduc	et Calibra	ntion)	P	p
	CAL	IBRATIO	N VAL	UE: H2S	Spp	mv CO	ppmv	LEL	%	02	%	IB	ppm
	CALIBI	RATION	READI	NG: H2S	s pp	mv CO	ppmv	LEL	%	02	%	IB	ppm
INSTRUMENT: Jerome J631X Hydrogen Sulfide Analyzer FUNCTION TEST: Pass (No Calibration Required) Fail (Return to Manufacturer for Calibration) CALIBRATION VALUE: N/A Factory Calibrated CALIBRATION READING: Manufacturer Calibration Only													
TIME VOCs Benzene % Hydrogen Sulfide Drager Tubes													
	(ppmv)	(ppmv)	LEL	(ppmv)	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Xylene (ppmv)]	Location		
1330	0.00		0	0.001						SW Corn	er of Pla	yground	1
1335	0.00		0	0.002							Library		
1408	0.00		0	0.001						U	pper La	b	
1410	0.00		0	0.001						L	ower La	b	
1413	0.00		0	0.001							Library		
1415	0.00		0	0.002						A	uditoriu	n	
1418	0.00		0	0.001						Lun	ch Pavil	ion	
1421	0.00		0	0.002						Main	Office A	Area	

Comments: The UltraRAE is used for measuring Volatile Organic Compound (VOC) and Benzene. The MultiRae is used for measuring VOCs and %LEL (used as an indicator of the potential presence of methane). The Jerome J631X is used for measuring Hydrogen Sulfide. Drager tubes are used for measuring Benzene, Toluene, Xylene and Ethylbenzene. %LEL is used as an indicator of methane but is not chemical specific. VOC readings are an indicator of all volatile constituents and are not chemical specific. Real time readings are used to guide sample collection. Samples collected daily are submitted to a laboratory for analyses.

H2S = Hydrogen Sulfide; O2 = Oxygen; % = percent; CO = Carbon Monoxide; LEL = Lower Explosive Limit; IB = Isobutylene ND = Not Detected; ppmv = parts per million by volume; N/A = Not Applicable; -- = No Reading (no measurement taken at this time)

	Colo Arro Critto 100		CHAIN OF	= CUSTODY	RECORD	
	dale Ave., Suite 130 lustrv. CA 91748	TURNAROL	JND TIME	DELIVERABLES	PAGE: /	OF /
Laboratories, Inc. Ph: 626-9	64-4032	Standard	48 hours	EDD	Condition upon receipt:	
Fx: 626-96	64-5832	Same Day	72 hours	EDF	Sealed Y	
Project No.: 15 - 202.		24 hours	96 hours		Intact Y	es 🗌 No
Project Name:		Other: 2.5 D	RV		Chilled _	deg C
Report TO: ELIZABETH GONZALEZ		BILLI	NG	A	NALYSIS REQUEST	
Company: WATEN STENCE ENVIRONMENTAL	Inc.	P.O. No.:				
Street: 2936 EAST CORONIADO ST.		Bill to:	6	1		
City/State/Zip: ANAHEIM, CA 92806				X		
Phone& Fax: 7/4 4/4 1122 / 7/4 4/14 11	لولو			21		
e-mail:				A		
LAB USE ONLY SAMPLE IDENTIFIC	ATION	SAMPLE DATE SAMPLE TIME	XIATAM MATAINER TYPE	9101		
HOL904-01 Br - Summa -2		1.19.16 0642	o	×		
		2				
× 622 BF -2		Sho1 1		x		
			10			
AUTHORIZATION TO PERFORM WORK 2 COMPANY		DATE/TIME	COMMENTS			
SAMPLED BY RORE WATERSTENIE FUN A	IR. 72 1.	ATETIME ATETIME				
RELINQUISHED BY AD I J. 9. 16 MS 45 PECENCEDBY		ATETINE 3441M				
RELINQUISHED BY L I PATETIME I 7 18 RECEIVED BY RELINQUISHED BY DATETIME TO COLOR	-Delogent	ATENTIME (1971-1718 DATENTIME				
METHOD OF TRANSPORT (circle one): Walk-In FedEx UPS	COURTER ATLI Oth	er				
DISTRIBUTION: White & Yellow - Lab Copies / Pink - Customer Copy		Preservation: H=HCL	N=None / Contai	ner: B=Bag C=Ca	n V=VOA 0=Other	Rev. 03 - 5/7/09

Client:	Waterstone Environmental
Attn:	Elizabeth Gonzalez
Project Name:	LAUSD Porter Ranch
Project No.:	15-202
Date Received:	01/19/16
Matrix:	Air
Reporting Units:	ppbv

]	EPA Metho		5			
Lab No.:	H0119	04-01	H0119	04-02		1	
Client Sample I.D.:	BF-SUN	BF-SUMMA-2		-2			
Date/Time Sampled:	1/19/16	1/19/16 6:42		10:45			
Date/Time Analyzed:	1/22/16	1/19/16 6:42 1/22/16 9:53		1/20/16 11:37			÷
QC Batch No.:	160121N	1/22/10 9:55 160121MS2A1		160119MS3A1			
Analyst Initials:	D	DT		DT			
Dilution Factor:	0.2	0	0.20				
ANALYTE	Result ppbv	RL ppbv	Result ppbv	RL ppbv			
Toluene	0.93	0.20	1.8	0.20			
Ethylbenzene	ND	0.20	0.55	0.20			
p,&m-Xylene	0.39	0.20	2.4	0.20			
o-Xylene	ND	0.20	1.3	0.20			

ND = Not Detected (below RL) RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

Date 1-22-16

page 1 of 1

AirTECHNOLOGY Laboratories, Inc. -

18501 E. Gale Avenue, Suite 130 ♦ City of Industry, CA 91748 ♦ Ph: (626) 964-4032 ♦ Fx: (626) 964-5832

Client:	Waterstone Environmental
Attn:	Elizabeth Gonzalez
Project Name:	LAUSD Porter Ranch
Project No.:	15-202
Date Received:	01/19/16
Matrix:	Air
Reporting Units:	ppbv

]	EPA Me	thod TO1	5			
Lab No.:	H01190	04-01	H0119	04-02			
Client Sample I.D.:	BF-SUM	BF-SUMMA-2		-2			
Date/Time Sampled:	1/19/16	1/19/16 6:42		10:45			
Date/Time Analyzed:	1/22/16	1/22/16 9:02		1/20/16 11:37			
QC Batch No.:	160121N	/IS3A1	160119MS3A1				
Analyst Initials:	DI	Г	DT				
Dilution Factor:	0.2	0	0.2	0			
	Result	RL	Result	RL			
ANALYTE	ppbv	ppbv	ppbv	ppbv			
Benzene	0.40	0.20	0.49	0.20			

ND = Not Detected (below RL) RL = Reporting Limit

Reviewed/Approved By:

Mark Johnson Operations Manager

The cover letter is an integral part of this analytical report

Date 1-22-16

— AirTECHNOLOGY Laboratories, Inc. –

Client:	-
Attn:	1
Project Name:	
Project No.:	-
Date Received:	
Matrix:	Air
Reporting Units:	ppbv

LABORATORY CONTROL SAMPLE SUMMARY	
Lab No.: METHOD BLANK LCS LCSD	
Date Analyzed: 01/19/16 01/19/16 01/19/16	
QC Batch No.: 160119MS3A1 160119MS3A1 160119MS3A1	
Analyst Initials: DT DT DT	
Dilution Factor: 0.20 1.0 1.0	
Result RL SPIKE AMT. Result Result Low Low ANALYTE ppbv ppbv ppbv % Rec. ppbv % Rec. RPD % Rec. % Rec. <th>High Max %Rec RSI</th>	High Max %Rec RSI
Benzene ND 0.20 5.0 4.82 96.5 4.90 98.0 1.6 70	130 30
Toluene ND 0.20 5.0 4.87 97.3 4.80 96.0 1.4 70	130 30
Ethylbenzene ND 0.20 5.0 5.49 110 5.12 102 7.1 70	130 30
p,&m-Xylene ND 0.20 10 12.2 122 11.4 114 6.2 70	130 30
o-Xylene ND 0.20 5.0 4.98 99.6 4.47 89.3 10.9 70	130 30

ND = Not Detected (below RL)

RL = Reporting Limit * = Analyte is outside QC Criteria

Reviewed/Approved By:

Mark Johnson **Operations Manager**

The cover letter is an integral part of this analytical report

Date:_______

Client:	
Attn:	12220
Project Name:	
Project No.:	
Date Received:	
Matrix:	Air
Reporting Units:	ppbv

		LAB	EP. ORATORY CO	A Method	TO15 SAMPLE SU	MMARY					
Lab No.:	METHOD BLANK		T]	LCS	L	CSD		T		
Date Analyzed:	01/22/16			01,	/22/16	01	/22/16	1		*****	
QC Batch No.:	160121MS2A1 DT 0.20			16012	1MS2A1	16012	IMS2A1	1		01.000	
Analyst Initials:					DT		DT	1			
Dilution Factor:					1.0		1.0	1			
ANALYTE	Result ppbv	RL ppbv	SPIKE АМТ. ppbv	Result ppbv	% Rec.	Result ppbv	% Rec.	RPD	Low %Rec	High %Rec	Max. RSD
Toluene	ND	0.20	10	9.50	95.0	9.74	97.4	2.4	70	130	30
Ethylbenzene	ND	0.20	10	10.1	101	10.2	102	0.6	70	130	30
p,&m-Xylene	ND	0.20	20	20.9	105	21.1	106	0.9	70	130	30
o-Xylene	ND	0.20	10	10.4	104	10.5	105	0.8	10	130	30

ND = Not Detected (below RL)

RL = Reporting Limit

* = Analyte is outside QC Criteria

Reviewed/Approved By:

Mark Johnson

Operations Manager

Date: 1-22.16

The cover letter is an integral part of this analytical report

page 1 of 1

 AirTECHNOLOGY
 Laboratories, Inc.

 18501 E. Gale Avenue, Suite 130 City of Industry, CA 91748 Ph: (626) 964-4032 Fx: (626) 964-5832

Client:	-
Attn:	
Project Name:	
Project No.:	1 <u></u> 12
Date Received:	
Matrix:	Air
Reporting Units:	ppbv

EPA Method TO15 LABORATORY CONTROL SAMPLE SUMMARY

2000 11000	METHOD BLANK		5PPBV LCS 5PPBV LCSD		IV LCSD						
ate Analyzed:	01/22/16			01/	/22/16	01	/22/16	1			
QC Batch No.:	160121MS3A1			16012	1MS3A1	16012	160121MS3A1				***
Analyst Initials:		Г]	DT		DT	1			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
lution Factor:	0.2	20			1.0		1.0	1			
ГЕ	Result ppbv	RL ppbv	SPIKE AMT. ppbv	Result ppbv	% Rec.	Result ppbv	% Rec.	RPD	Low %Rec	High %Rec	Max. RSD
	ND	0.20	5.0	6.41	128	6.14	123	4.3	70	130	30
	ate Analyzed: QC Batch No.: nalyst Initials: Jution Factor: TE	vate Analyzed: 01/22 QC Batch No.: 1601211 nalyst Initials: DT Jution Factor: 0.2 TE ppbv ND ND	vate Analyzed: 01/22/16 QC Batch No.: 160121MS3A1 nalyst Initials: DT Jution Factor: 0.20 TE ppbv ND 0.20	Pate Analyzed: 01/22/16 QC Batch No.: 160121MS3A1 nalyst Initials: DT Jution Factor: 0.20 TE ppbv ND 0.20	Pate Analyzed: 01/22/16 01/22/16 QC Batch No.: 160121MS3A1 16012 nalyst Initials: DT 1 Jution Factor: 0.20 1 TE ppbv ppbv ppbv ND 0.20 5.0 6.41	vate Analyzed: 01/22/16 01/22/16 QC Batch No.: 160121MS3A1 160121MS3A1 nalyst Initials: DT DT Jution Factor: 0.20 1.0 TE ppbv ppbv ppbv ND 0.20 5.0 6.41	vate Analyzed: 01/22/16 01/22/16 01 QC Batch No.: 160121MS3A1 160121MS3A1 16012 nalyst Initials: DT DT DT Jution Factor: 0.20 1.0 Result TE ppbv ppbv ppbv % Rec. ppbv ND 0.20 5.0 6.41 128 6.14	vate Analyzed: 01/22/16 01/22/16 01/22/16 QC Batch No.: 160121MS3A1 160121MS3A1 160121MS3A1 nalyst Initials: DT DT DT Jution Factor: 0.20 1.0 1.0 TE ppbv ppbv ppbv % Rec. Ppbv % Rec. ND 0.20 5.0 6.41 128 6.14 123	vate Analyzed: 01/22/16 01/22/16 01/22/16 QC Batch No.: 160121MS3A1 160121MS3A1 160121MS3A1 nalyst Initials: DT DT DT Jution Factor: 0.20 1.0 1.0 TE ppbv ppbv ppbv % Rec. RPD ND 0.20 5.0 6.41 128 6.14 123 4.3	vate Analyzed: 01/22/16 01/22/16 01/22/16 QC Batch No.: 160121MS3A1 160121MS3A1 160121MS3A1 nalyst Initials: DT DT DT Jution Factor: 0.20 1.0 1.0 TE Ppbv Ppbv Ppbv % Rec. RPD % Rec. ND 0.20 5.0 6.41 128 6.14 123 4.3 70	vate Analyzed: 01/22/16 01/22/16 01/22/16 QC Batch No.: 160121MS3A1 160121MS3A1 160121MS3A1 nalyst Initials: DT DT DT Jution Factor: 0.20 1.0 1.0 TE ppbv ppbv ppbv % Rec. Result Low High ND 0.20 5.0 6.41 128 6.14 123 4.3 70 130

ND = Not Detected (below RL)

RL = Reporting Limit * = Analyte is outside QC Criteria

Reviewed/Approved By:

Mark Johnson

Date: 1-22-16

Operations Manager

The cover letter is an integral part of this analytical report

AirTECHNOLOGY Laboratories, Inc. -

1210 E. 223rd Street, Suite #314 · Carson, California 90745 · 310/830-2226 · Fax 310/830-2227

CLIENT	WATERSTONE ENVIRONMENTAL
PROJECT NO:	LAUSD - SoCal Gas
LABORATORY NO:	16-049
SAMPLING DATE:	January 19, 2016
RECEIVING DATE:	January 19, 2016
ANALYSIS DATE:	January 19-20, 2016
REPORT DATE:	January 21, 2016

Laboratory Analysis Report

Analysis Method	SCAQMD 307-91								
Detection Limits	5.0 PPBV								
	Client ID	BF-Summa-2 (Tk 102)	BF-Bag-2	DA-Summa-1 (Tk 101)	DA-Bag-1				
	Sampling Time	0642	1029	1438	0930				
\mathbf{X}	Sampling Date	1/19/16	1/19/16	1/19/16	1/19/16				
X	Lab ID	01916-16	01916-17	01916-18	01916-19				
Analyte	Units	PPBV	PPBV	PPBV	PPBV				
Hydrogen Sulfide		<5.0	<5.0	<5.0	<5.0				
Carbonyl Sulfide		<5.0	<5.0	<5.0	<5.0				
Methyl Mercaptan		<5.0	<5.0	<5.0	<5.0				
Ethyl Mercaptan		<5.0	<5.0	<5.0	<5.0				
Carbon Disulfide		<5.0	<5.0	<5.0	<5.0				
t- Butyle Mercaptan		<5.0	<5.0	<5.0	<5.0				
Tetra hydro-thiophene		<5.0	<5.0	<5.0	<5.0				
Un-Identified S Compo	unds	<5.0	<5.0	<5.0	<5.0				
TRS as H2S		<40.0	<40.0	<40.0	<40.0				

TRS: Total Reduced Sulfur as Hydrogen Sulfide PPBV: Parts Per Billion-Volume

Dr. Andrew Litto

President

1210 E. 223rd Street, Suite #314 · Carson, California 90745 · 310/830-2226 · Fax 310/830-2227

CLIENT CLIENT PROJECT: LAB PROJ NO: SAMPLING DATE: RECEIVING DATE: ANALYSIS DATE: REPORT DATE: WATERSTONE ENVIRONMENTAL LAUSD - SoCal Gas 16-049 January 19, 2016 January 19, 2016 January 19-20, 2016 January 21, 2016

Quality Assurance Report

Duplicate Analysis

Sample ID: BF-Summa-2, Tk 102

LAB ID: 01916-16

Analysis Method	SCAQMD 307-91					
Detection Limit	5.0 PPBV					
Analyte	Aver. Conc. PPBV	Dil. Factor Ambient Air	DF*A/CF PPBV	% Sample Recovery		
Hydrogen Sulfide	<5.0	1	<5.0	N/A		
Carbonyl Sulfide	<5.0	1	<5.0	N/A		
Methyl Mercaptan	<5.0	1	<5.0	N/A		
Ethyl Mercaptan	<5.0	1	<5.0	N/A		
Carbon Disulfide	<5.0	1	<5.0	N/A		
t- Butyle Mercaptan	<5.0	1	<5.0	N/A		
Tetra hydro-thiophene	<5.0	1	<5.0	N/A		
Unidentified S Compounds	<5.0	1	<5.0	N/A		
Total Sulfur as H2S	<40.0	1	<40.0	N/A		

N/A: Not Applicable

win.

Dr. Andrew Kitto President

1210 E. 223rd Street, Suite #314 · Carson, California 90745 · 310/830-2226 · Fax 310/830-2227

CLIENT	WATERSTONE ENVIRONMENTAL
CLIENT PROJECT:	LAUSD - SoCal Gas
LAB PROJ NO:	16-049
SAMPLING DATE:	January 19, 2016
RECEIVING DATE:	January 19, 2016
ANALYSIS DATE:	January 19-20, 2016
REPORT DATE:	January 21, 2016

Laboratory Analysis Report

Analysis Method	EPA 18								
Detection Limits	0.1 PPMV								
	Sample ID	BF-Summa-2 (Tk 102)	BF-Bag-2	DA-Summa-1 (Tk 101)	DA-Bag-1				
	Sample Time	0642	1029	1438	0930				
\mathbf{X}	Sampling Date	1/19/16	1/19/16	1/19/16	1/19/16				
	Lab ID	01916-16	01916-17	01916-18	01916-19				
ANALYTE	Units	PPMV	PPMV	PPMV	PPMV				
C1 - Methane		4.55	5.05	4.81	5.95				
C2 - Ethane, Ethylene		<0.1	<0.1	<0.1	<0.1				
C3 - Propane		<0.1	<0.1	<0.1	<0.1				
Iso Butane		<0.1	<0.1	<0.1	< 0.1				
n- Butane		<0.1	<0.1	<0.1	< 0.1				
Iso-Pentane		<0.1	<0.1	<0.1	<0.1				
n-Pentane		<0.1	<0.1	<0.1	<0.1				
C6 - Hexanes		<0.1	<0.1	<0.1	<0.1				
C6+		<0.1	<0.1	< 0.1	<0.1				
ТМНС		<1.0	<1.0	<1.0	<1.0				

TNMHC - Total Non-Methane HydroCarbon PPMV: Parts Per Million-Volume

Dr. Andrew Kitto

Dr. Andrew Kit President

1210 E. 223rd Street, Suite #314 · Carson, California 90745 · 310/830-2226 · Fax 310/830-2227

CLIENT LAB PROJ NO: SAMPLING DATE: **RECEIVING DATE: ANALYSIS DATE: REPORT DATE:**

WATERSTONE ENVIRONMENTAL 16-049 **January 19, 2016** January 19, 2016 January 19-20, 2016 January 21, 2016

EPA 18 - Laboratory Analysis Report (QA-QC)

Sample ID: BF-Summa-2. Tk 102

Sample ID: 01916-16 Mean % Difference Analysis #1 Analysis #2 Analyte PPMV **PPMV PPMV** from the Mean* C1 - Methane 4.55 4.63 4.59 0.9 C2 - Ethane, Ethylene < 0.1< 0.1< 0.1N/A C3 - Propane < 0.1 < 0.1N/A < 0.1iso-Butane < 0.1 < 0.1 < 0.1 N/A N/A n-Butane < 0.1< 0.1< 0.1iso- Pentane < 0.1 < 0.1 < 0.1 N/A n-Pentane < 0.1< 0.1< 0.1N/A C6 - Hexanes < 0.1 < 0.1< 0.1N/A C6+ < 0.1 < 0.1 < 0.1N/A

N/A: Not Applicable

*:Must be ≤10%

Dr. Andrew Kitto

President

1210 E. 223rd Street, Suite #314 · Carson, California 90745 · 310/830-2226 · Fax 310/830-2227

CLIENT	WATERSTONE ENVIRONMENTAL
LAB PROJ NO:	16-049
SAMPLING DATE:	January 19, 2016
RECEIVING DATE:	January 19, 2016
ANALYSIS DATE:	January 19-20, 2016
REPORT DATE:	January 21, 2016

Quality Control/Quality Assurance Report

	Results
Lab ID	PPMV
C1 - Methane	<0.1
C2 - Ethane	<0.1
C3 - Propane	<0.1
C4 - Butane	<0.1
C5 - Pentane	<0.1
C6 - Hexane	<0.1

II- Initial Calibration Verification Standard (ICV)

L.4. 18	Theoretical Value	Tested Value	%
LAUID	I I VI V	r r IVI V	itecovery
C1 - Methane	14.99	15.00	100%
C2 - Ethane	15.12	15.14	100%
C3 - Propane	15.27	15.26	100%
C4 - Butane	15.04	15.03	100%
C5 - Pentane	15.04	15.08	100%
C6 - Hexane	14.95	14.75	99%

* Must be ±10%

Dr. Andrew Kitto President

m mar	ntu	E			91	-049	No	7965
Analytical	Services	lnc.			a	310/830-2226 • Fe	ıx 310/830-2227 • www.qı	uantumairlab.com
						1210 E. 223rd S	itreet, Suite #314 • Carson	, California 90745
CHAIN OF CUST	YUC						Page: _/	of: /
Client: WATERSTONE EN	IPCN MENTA)					Turnaround	Time:
NC.		Project No.	15-	202		Analysis		
		Project Nar	ne:	d suf			Same Day	
Contact Person: E. Cach Z.	2374	Project Ma	nager: 🖉	CRONTALLY	No S	a/ / /	A 🗆 24 Hours	
tel: 714 414 11	22	P.O. Numb	er:		1× x		48 Hours 2.5	Sam
fax: 714 412 11	loio				15 3/ 2	///	□ Normal	1000
Client Sample ID	Tag #	Date	Time	Lab ID Number			Remar	ks
BF-SUMMA-2	102	1.19.16	0642	91-9150	×		MAIN OFFICE	Allen
BF - 2			1029	H T	X		AUNITURIUM	
				-				
					2			
Relinguished by; (signature)	Date/Time			Received by	: (signatur	(e)	Date/time	
losta P	1-19-16	1645	X	Anth	Q I		1/1916 16	5: HS
Relinguished by: (signature)	Date/Time			Received by	: (signatur	e)	Date/time	
Relinguished by: (signature)	Date/Time		2	Received by	: (signatur	e)	Date/time	

